COURSE INF	ORMATON				
Course Title	Code	Semester	L+P Hour	Credits	ECTS
TIME SERIES ANALYSIS AND FORECASTING	ESYE648		3+0	3	10

Prerequisites

A background in statistics at the level of ISE254.

Language of Instruction	English
Course Level	Ph.D
Course Type	Elective
Course Coordinator	
Instructors	Prof. Dr. Ali Taylan Ula
Assistants	
Goals	To introduce the basic principles and methods of time series analysis and forecasting.
Content	Stationarity. Autocovariance and autocorrelation functions. General linear process. Stationary models: AR, MA, ARMA. Model identification. Estimation. Diagnostic cecks. Nonstationary models: ARIMA. Seasonal models. Forecasting. Statistical package applications.

Course Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
Ability to analyze an equally spaced time series with no gaps.	2	1,3	A,C
Ability to specify the model of a time series, and make parameter estimates.	5	1,3	A,C
Ability to do model diagnostic checks.	5	1,3	A,C
Ability to consider trend and seasonality.	5	1,3	A,C
Ability to do forecasting.	5	1,3	A,C
Ability to use AR, MA, ARMA, ARIMA and seasonal ARIMA models.	5	1,3	A,C
Ability to use statistical package MINITAB.	5	3	A,C
Awareness of ethical values.	10		A,C

Teaching Methods:	1: Lecture, 2: Paper Discussion, 3: Lab, 4: Case-Study
Assessment Methods:	A: Testing, B:Paper Summary, C: Homework, D: Project

	COURSE CONTENT					
Week	Topics	Study Materials				
1	Introduction. Stationarity.	Lecture Notes				
2	Autocovariance, Autocorrelation and Partial Autocorrelation Functions.	Lecture Notes				
3	General Linear Model.	Lecture Notes				
4	Moving Average (MA) Models.	Lecture Notes				
5	Autoregressive (AR) Models.	Lecture Notes				
6	Mixed AR and MA (ARMA) Models.	Lecture Notes				
7	MIDTERM EXAM I Model Identification.	Lecture Notes				
8	Model Estimation.	Lecture Notes				
9	Diagnostic Checks.	Lecture Notes				
10	Nonstationary Models. Differencing. ARIMA Models.	Lecture Notes				
11	Seasonal ARIMA Models.	Lecture Notes				
12	MIDTERM EXAM II Forecasting. MINITAB Applications.	Lecture Notes				
13	Forecasting. MINITAB Applications.	Lecture Notes				
14	Forecasting. MINITAB Applications.	Lecture Notes				

	RECOMMENDED SOURCES
Textbook	Lecture notes were used.
Additional Resources	

MATERIAL SHARING					
Documents					
Assignments	6 Homeworks.				
Exams	2 Midterm Exams, Final, 2 Quizzes.				

ASSESSMENT				
IN-TERM STUDIES	PERCENTAGE			
Mid-terms	2	76		
Assignment	6	8		
Quizzes	2	8		
Attendance		8		
Total		100		
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		35		
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		65		
Total		100		
Attendance Total CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE Total		8		

COURSE CATEGORY	Expertise Courses

	COURSE'S CONTRIBUTION TO PROGRAM								
No	No Program Learning Outcomes			Contrib					
1	Ability to reach knowledge in breadth and depth through scientific research in Systems Engineering field; to have extensive knowledge about current techniques and procedures together with their constraints.	1	Ζ	3	4	S			
2	Ability to complement and apply knowledge by scientific methods utilizing limited or missing data; to use knowledge in different disciplines effectively					Х			

	by blending them.			
3	Ability to formulate Systems Engineering problems; to develop novel and original ideas and procedures for their solutions and to use innovative procedures in solutions.			
4	Awareness of new and developing applications in Systems Engineering; ability to investigate and learn these applications when required.			
5	Ability to design and apply analytical, and modeling and experimental based research; to solve and interpret complex situations encountered in this process.			х
6	Ability to lead multi-disciplinary teams; to develop solution approaches in complicated situations and to take responsibility.			
7	Ability to develop novel and/or original ideas and methods; to develop innovative solutions for the design of systems, parts or the processes.			
8	Ability to communicate orally or in writing the process and the results of Systems Engineering studies systematically and openly in national or international platforms.			
9	Ability to master a foreign language (English) at the European Language Portfolio B2 General Level to communicate orally or in writing.			
10	Ability to recognize social, scientific and ethical values in the process of collection, interpretation and publishing of data, and in all professional activities.		x	
11	Ability to visualize social and environmental dimensions of Systems Engineering applications and to observe these dimensions in professional practice.			
12	Ability to develop appropriate methodology and procedures for the modeling, improvement, control and design of complex systems for a specified target.			

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION							
Activities	Quantity Duration W (Hour) (
Course Duration (Excluding the exam weeks: 12x Total course hours)	12	3	36				
Hours for off-the-classroom study (Pre-study, practice)	14	10	140				
Midterm examination	2	2	4				
Homework	6	10	60				

Project			
Final examination	1	2	2
Total Work Load			242
Total Work Load / 25 (h)			9,68
ECTS Credit of the Course			10